e Republic of the Philippines
. Department of Social Welfare and Development
Batasan Pambansa Complex, Constitution Hills

Quezon City
Telephone No. 931-8101 to 07

Memorandum Circudlar No. _- -I-
Series of 2005

SUBJECT: INFORMATION SYSTEMS DEVELOPMENT GUIDELINES*

1. RATIONALE

Systems are developed to solve problems and/or enhance activities in an organized way. Its
development mainly deals with careful analysis and design of new procedures.

Computer-based systems are now developed to fast track and ease management decision-
making. Everybody wants to take advantage of the technology resulting to a great demand
for Systems Development. Since DSWD does not have any written standards, systems
development efforts initiatives are disorganized, costly and not well planned. There is no
clear role relationship among users, developers and owners.

Further, the most critical barrier in successful software development projects in the public
sector is the lack of Standards, Formal Processes for software project development and
acquisition which include guidelines on requirements definitions, evaluation, quality
assurance and final acceptance of software projects.

Thus, to ensure the efficiency of the systems developed in and for the Department, these
guidelines have been created.

2. OBJECTIVE
The intent of these guidelines is to:

» Establish standards and procedures in developing and/or acquiring Information
Systems;

» Ensure that developed/acquired systems will be both effective and efficient based
on functionality and cost-effectiveness; and

> Provide clear understanding of the roles that different stakeholders
(Management, Users, Developers, MISS, etc.) have in the
development/acquisition, implementation and maintenance of systems.

3. LEGAL BASIS

3.1 Executive Order 265 - Approving and Adopting the Government Information Systems
Plan (GISP) as Framework and Guide for all Computerization Efforts in Government.

3.2 DSWD Memorandum Order No, 30 (Series of 2003) - Constituting the Management
Information System Service of DSWD.

DSWD Information Systems Development Guidelines
Page 1 of 7
\\Ibm2\users\MISS\RAtotubo\SysDev\System Development Guidelines Final.doc

3.3 Republic Act No. 8792 (Electronic Commerce Act) - An Act Providing for the
Recognition and Use of Electronic Commercial and Non-Commercial Transactions and
Documents, Penalties for Unlawful Use Thereof and for Other Purposes

3.4 NCC Memorandum Circular 2004-01 - Repealing NCC Memorandum Circular No. 99-
02 "Prescribing Guidelines For I.T. Resource Acquisition in Government" and
Providing New Guidelines Therefor

3.5 DSWD Information Systems Plan 2002-2006

3.6 Commission on Audit Circular No. 97-003 - Accounting Guidelines on the Acquisition,
Maintenance and Disposition of Information Technology Resources

4. DEFINITION OF TERMS

The Definition of Terms found in Annex A shall be used, and shall form an integral part of
this Circular. The Definition of Terms may be updated from time to time to reflect new
hardware, software, services, and new perspectives in the field of Information Technology
particularly the Internet.

5. SYSTEM DEVELOPMENT STANDARD

5.1

Key Concepts

5.1.1 Project Type. Project type refers to the characteristics of the project. In this
context, the DSWD software project types can be categorized as:

.

» New Systems Development Project: development of new
software. This typically involves automation of an existing manual
business procedure.

“.’

Systems Enhancement Project: major modification of function,
feature, performance or interfaces of existing software. This project
may use the same environment of the current system.

» Systems Re-engineering Project: project that involves
restructuring of data, architecture and logic. Restructuring is
performed to produce a design that does the same function better
than the original program.

v

Conversion Projects: change existing system to a different
format, platform or environment with no change in functionality.
This may be done to keep up with latest technology.

» Systems Acquisition: purchase of software which can be
customized to fit the needs of the Agency.

5.1.2 Project Development Team. The project team is a very important
component of any software development project. Every DSWD software
project development team must, at the minimum, be composed of:

5.1.2.1 Project Manager who shall oversee the entire project
development process to include:

DSWD Information Systems Development Guidelines

Page 2 of 7

\\Ibm2\users\MISS\RAtotubo\SysDev\System Development Guidelines Final.doc

5.1.2.2

5.1.2.3

5.1.2.4

5.1.2.5

» Ensuring that the project and the
deliverables or outputs are on schedule;

» Supervision of team members;

» Coordination of efforts among user community and
development team.

Quality Assurance Team who shall ensure that the software
meets the requirements and quality standards. The team shall
perform the following activities:

» Application of technical methods,
» Conduct technical reviews,
» Software testing,

» Enforcement of software standard.
Systems Development Team composed of:

> System Analysts, who shall coordinate, gather, refine
and prioritize the various user requirements and develop
the design specifications.

» Programmers who shall translate the design into codes.

» Documentation Analysts who shall be responsible for
producing user documentation and assist in the
development documentation.

Systems Support and Maintenance Team who shall be involved
in maintenance of existing software that includes activities such as:

» Customization
» Software maintenance
» Installation

Training Team who shall formulate systems training syllabus and
provide usability training to clients.

Annex B illustrates a typical organizational structure of a Project Development Team.

5.2 Methodology

A well-defined methodology is a key success factor in software development and an
important instrument in controlling resource management, design and quality assurance.
Software methodology is composed of a software development model used in conjunction
with one or more techniques and tools.

It is important to structure the development of software to:

» Have a standard approach in systems development.

DSWD Information Systems Development Guidelines

Page 3 of 7

\\Ibm2\users\MISS\RAtotubo\SysDev\System Development Guidelines Final.doc

> Provide guidelines to follow for every activity in software development and the
sequence they are carried out.
> Make project planning and management easier.

5.2.1 Software Lifecycle Model

For both in-house and outsourced new systems development project, the Agency
shall implement the methodology for open source or open software development. It
is @ more modern approach to software development that is similar in parts to widely
known software development methods. The major benefits of open source model
include:

» Participation in global network of software development

> Ability to customize software to specific agency needs
» Reduced cost and less dependency on imported technology and skills

It applies the sequential approach of the traditional software life-cycle paradigm as
well as an evolving approach employed in evolutionary software.development,
particularly, using the incremental model. A version or prototype is used for better
understanding of user requirements and evaluation and testing of users.

The model is also based upon decentralized model and introduces collaborative
environment allowing independent peer review. Consequently, the Internet is used
as a tool to create a central source of information (mail, web, CVS, forums). Design
decisions and programming algorithms can be discussed intensely using this
medium.

5.2.2 Open Source Development Lifecycle Phases
5.2.2.1 Initiation

In this phase the needs of the Agency are assessed and it is determined
whether a particular need can be fulfiled by the development of a new
system. During this phase resources are appraised to check its availability for
use in the proposed development.

A Project Proposal is required in this phase and it should include; but not
limited to, the following:

» Project Definition: identify the client, work to be done, goals of the
project, scope and primary function of the software to be
developed.

» Evaluation: determine the existence of available open source
software, suitability to requirements and availability of resources.

» Planning: estimate the human effort (person-months), and project
duration (in calendar time); schedule the tasks and identify
interdependencies.

» Risk Analysis: identify and assess risk, mitigation of risks.

This proposal shall be evaluated and results of the evaluation should be
guantified in a project evaluation document.

DSWD Information Systems Development Guidelines
Page 4 of 7
\\Ibm2\users\MISS\RAtotubo\SysDev\System Development Guidelines Final.doc

5.2.2.2 Requirements Analysis

In order to have a thorough understanding of the needs of the proposed
system, the existing system, whether manual or automated should be fully
analyzed. Also called Systems Analysis, this phase requires extensive
information gathering and research as well as sifting through documents,
reports, and work papers produced by existing systems and extensive
interviews with data users and data owners. Deliverables for this phase are a
Software Requirements Specification (SRS) document (Annex C) and a
Requirements Validation Report.

5.2.2.3 Design

In this phase, the structure and architecture of the proposed system is
defined. All data and information gathered in the previous phase shall be
used to produce the logical and physical design specifications of the system.
Expected outputs of this phase are entity-relationship diagrams, data flow
diagrams, program structure charts, system flowcharts, - and system
infrastructure designs. All these technical models should satisfy the
requirements of the proposed system and must be presented thru a design
specification document (Annex D).

5.2.2.4 Implementation

During this phase design specifications are translated into the software
program. Deliverables of this phase include the initial version of the software,
its code, and the coding manual.

5.2.2.5 Testing

This phase requires the testing of the software to make sure that it performs
in accordance with both technical and functional business requirements. The
system is tested internally by the development team to detect errors and
make sure that they are fixed.

After the internal testing, a test version is released for end-users for
evaluation. End-users may propose new features or enhancements and/or
discover and suggest bug fixes. Required documents for this phase are a
software test plan document (Annex E) and a test evaluation document.

5.2.2.6 Release

The system is deployed in its target environment during this stage.

5.2.2.7 Support and Maintenance

In this phase user training and on-going system maintenance is done to
ensure the systems’ use and functionality. It shall include advanced user

training and studies on possible system enhancements. A Users Manual
should be provided for all users.

DSWD Information Systems Development Guidelines

Page 5 of 7

\\Ibm2\users\MISS\RAtotubo\SysDev\System Development Guidelines Final.doc

5.2.3 Basic Roles
Executive Committee (EXECOM) Members:

In the development and/or acquisition of new systems, several changes in the
operational policies and implementing guidelines need to be applied. EXECOM
Members will be responsible for the approval of proposals and changes as well as the
allotment of budget.

Management Information System Service (MISS):

MISS is responsible for evaluating the project proposals and recommending what
type of project is needed. They shall also formulate the Functional Systems
Specification for the system and conduct the initial Requirements Elicitation and
Evaluation.

Further, MISS shall be in charge of the Systems Administration and Security once
the system is deployed. .

Data Owner:

First and foremost, the data owner is responsible for crafting the Project Proposal.
They shall also provide all necessary documents and/or reports needed in the
Requirements Analysis.

The data owner is also in-charge of the database administration and management of
the system. Since the ownership of data and the system is under their supervision,
they are the cost center for the Systems Development. There should be a focal
person assigned as the User-level Database Administrator. It will be his/her
responsibility to look for errors and possible system improvements as well as the
conduct of new studies and proposals. He is also responsible for the updating of the
systems (program syntax). He has the authority to give access levels to the
personnel who wishes to access the system.

Another part of the data owners is the Data User (Management, Public). They are
the ones who make use of the systems data for viewing, analysis and public
transparency.

Annex F details all roles.

5.2.4 Software Development Lifecycle Requirement

Each phase in the lifecycle requires:
» Quality Assurance procedures running in parallel with the lifecycle
activities
» Verification/Validation report to be conducted by the QA group
» Documentation

5.2.5 Analysis and Design Technique

Open Source projects, as with proprietary projects, require a level of requirements
analysis, design and modeling to successfully implement a solution. Unified Modeling
Language (UML) is the definitive approach to ensure that the development

DSWD Information Systems Development Guidelines

Page 6 of 7

\\Ibm2\users\MISS\RAtotubo\SysDev\System Development Guidelines Final.doc

incorporates sound processes, robust architecture and reusability. Thus, the Agency
shall adopt UML 1.4 by Booch, Rumbaugh and Jacobson as the standard modeling
notation.

UML is the standard modeling language set by the Object Management Group (OMG)
in 1997 and also the industry standard language for specifying, visualizing,
constructing and documenting the artifacts of software systems. It supports iterative
and incremental development process and is largely process-independent, meaning
that it is not tied to any particular software development life cycle.

UML defines notations and semantics for the following types of problem solution:

» Use Case Model - describes boundary and interaction between users and
the system.

» Collaboration Model - describes how objects in the system interact to
accomplish tasks.

» Dynamic Model - State charts describe states that classes assume over
time. Activity diagram describe the workflow the system will accomplish.

» Logic or Class Model - describes the classes and objects of the system.

» Physical Component Model - describe software, and sometimes hardware,
of the system.

» Physical Deployment Model - describes the systems physical architecture
and component deployment on system hardware.

5.2.6 Software Licensing and Ownership

The Agency shall have full, uncontestable rights to all information and data
generated by the system and to the design and source code of the system.

5.2.7 Development Tools

The Agency shall use solid free programming languages, platform and tools for
software development. This allows affordable software for the government and
access to software without costly licensing implications.

b

6. EFFECTIVITY
This circular takes effect immediately.
Issued in Quezon City this 20 of _January 2005.

M
RAZON JULIANO-SOLIMAN

Secretary
Department of Social Welfare and Development

*Adapted with major revisions from the DOST Software Standard Template

DSWD Information Systems Development Guidelines
Page 7 of 7
\\Ibm2\users\MISS\RAtotubo\SysDev\System Development Guidelines Final.doc

ANNEX A
DEFINITION OF TERMS

Agency - The Department of Social Welfare and Development; or any of its offices
or institutions.

Architecture - A design. The term architecture can refer to either hardware or
software, or to a combination of hardware and software. The architecture of a
system always defines its broad outlines, and may define precise mechanisms as
well.

An open architecture allows the system to be connected easily to devices and
programs made by other manufacturers. Open architectures use off-the-shelf
components and conform to approved standards. A system with a closed
architecture, on the other hand, is one whose design is proprietary, making it
difficult to connect the system to other systems.

Data - Distinct pieces of information usually formatted in a special way. Data can
exist in a variety of forms -- as numbers or text on pieces of paper, as bits and bytes
stored in electronic memory, or as facts stored in a person's mind.

Data Owner - Individuals, normally managers or directors, who have responsibility
for the integrity, accurate reporting and use of computerized data.

Functional System Specification (FSS) - The Functional System Specification
(FSS) is the major requirement in the development or acquisition of individual
application systems. The major user, or application owner, is responsible for
developing the FSS. The MISS technical staff provides assistance.

A Functional System Specification describes an application in terms of functional
requirements and interfaces. It identifies the major entities and lists critical data
elements. It describes the inputs, processes and outputs of a system focusing on
what is important to achieve the goals of the application system.

The basis of the FSS is the business process analysis. The starting point in any
applications is to understand the context of the information, not the organization.
The primary focus is to define the “functions” needed to deliver a certain product or
service to achieve the goals of the organization.

The FSS is based primarily on data and how data is translated or converted into
other forms. While the present organizational structure may be considered during
the development of the FSS, the FSS is not limited by it. The FSS may demand a
change in the way things are done regardless of the organizational structure. Thus,
there is an opportunity for change management when implementing application
systems.

Two types of business modeling techniques may be used as part of the FSS:

» Entity Relationship Diagram (ERD). ERD captures the organization's business
functions and identify business processes. It depicts the entities perceived as

important to the running of the business, such as people, things or concepts
on which information is needed.

» Data Flow Diagram (DFD). A DFD depicts how data is processed. It is based
on policies and procedures and shows the processes and outputs.

Life Cycle - Period of time that starts when a software product is conceived and
ends when the software is no longer available for use.

Open Source - a term used to describe a tradition of open standards, shared source
code, and collaborative software development.

Phase - Period of time during the life cycle of a project in which a related set of
software engineering activities is performed. Phases may overlap.

Quality - the totality of features and characteristics of a product or service that bear
on its ability to satisfy stated or implied needs.

Requirements Elicitation - the identification of specific requirements through a
wide variety of techniques.

Requirements Evaluation - the process of validating gathered requirements to
provide an accurate account of all client requirements.

Software - programs, procedures, rules and any associated documentation
pertaining to the operation of a computer system

User - An individual who uses a computer. This includes expert programmers as well
as novices. An end user is any individual who runs an application program.

ANNEX B

SOFTWARE PROJECT DEVELOPMENT TEAM

Project Team

Project Manager

Development

Support &
Maintenance

Training

— Programmer

— Analyst/Designer

 Documentation

ANNEX C

SOFTWARE REQUIREMENTS SPECIFICATION DOCUMENT TEMPLATE
(To be accomplished by MISS/Outsourced Developer with assistance from the Data Owner)

1. Introduction
1.1 Purpose of the document

Describe the goal and purpose of the project including the intended audience.
1.2 Scope of the software

Describe the domain problem and what part of it will be addressed. Indicate the
limitations and disclaimers the reader should know.

1.3 Definitions, acronyms and abbreviations
1.4 References

1.5 Overview of the document

2. Overall description

2.1 Product perspective

Describe the relation to the other components. Describe interfaces to other software,
hardware and users.

2.2 Product functions
Describe the main functions the specified product must perform.

2.3 User characteristics
Who will use the system? What training is needed?

2.4 General constraints
Describe constraints that apply and why they exist.

2.5 Assumptions and dependencies
List factors which can affect the requirements. This is not design constraints, but
rather things that if they are changed, you have to change the requirements. For
instance, you might assume that data is updated each second, that back-up is taken
weekly or that a certain version of the browser is available.

3. Specific requirements

3.1 Interface requirements
This section is applicable if more detail than the description in 2.1 is needed.

3.1.1 User interfaces

Describe required user interface. This is not the design of the user interface.

3.1.2 Hardware interfaces
Describe the things you need. Probably only a standard WS with keyboard and mouse.
3.1.3 Software interfaces
Detailed description of input and output items to the system.
3.1.4 Communication interfaces
Describe intranet/internet connection
3.2 Functional requirements (function-oriented)
3.2.1 Information flows

Describe how information is flowing between system parts to realize the function.
Use sequence diagram.

3.2.2 Process description

Describe processes realizing the function in terms of input, output and action.
Use use-case descriptions.

3.2.3 Data construct specification
Describe data in terms of data requirements. Use class diagram

3.3 Performance requirements
Specify both static and dynamic numerical constraints such as: number of users,
response time, max. simultaneous users, amount of information to be handled. This is
probably most interesting for the optimization group.

3.4 Design constraints
In principle, the SRS should not deal with design, but there might be requirements
that are known that will constrain the designers' work, for instance, use of a certain
standard. In your case the negotiated protocols might impose constraints.

3.5 Software system attributes

System attributes or quality factors which have requirements, for example:

Reliability
Availability
Security
Maintainability
Portability
Usability

L I

3.6 Other requirements

Things that did not fit above. If this section becomes large, maybe you should consider
changing the document structure.

Appendices

ANNEX D

DESIGN SPECIFICATION DOCUM ENT TEMPLATE
(To be accomplished by MISS or Outsourced Developer)

1. Introduction
1.1 Purpose of the document

Describe the goal and purpose of the project including the intended audience.
1.2 Scope of the software

Describe the domain problem and what part of it will be addressed. Indicate the
limitations and disclaimers the reader should know.

1.3 Definitions, acronyms and abbreviations
1.4 References

1.5 Overview of the document

2. Preliminary Design

2.1 Conceptual High Level Architecture:

Include high level graphical representation depicting the overall application
architecture. The design should use package diagram and design class diagram.
Dependency of design units should be indicated. A design unit is defined as a process

or function, object, class, screen, etc.
3. Detailed Design

3.1 Conceptual Low Level Architecture

For process modeling, this section decomposes and describes sub processes

(functions). Use sequence diagram.

3.2 Conceptual Data Model

This section includes a graphical representation and a textual description of the logical
database structures. The relationships between tables and entities for the overall
application should be clear. The table depictions should be populated with data from
the data dictionary. This representation should include relationships between tables
and external entities as well. Each textual description should include a definition of

the entity/table and their relationships.

3.3 Schema Design Diagram

This section shall include a graphical representation of the physical structure of the
database tables and a textual description of those tables. Use design class diagram.

3.4 Graphical User Interface Design

In this section rough out the user interface including any application menus, screens
or forms, reports, etc. This may include a graphical depiction of application menus,

forms, reports, etc.

3.5 Data Dictionary

This section shall include a list of all data elements included in the physical schema.

At a minimum, each data element should contain the following:

Data Element Name

User Defined Name

Definition

Data Type

Data Format/Length

Synonyms

User Synonyms

Specifications/Algorithms for Derived Data

LI O L L

3.6 Data Validation Procedures, Referential Integrity Rules,

Enforcing Business Rules

Discuss how data integrity will be maintained within the data base.

4 Interface Design

Identify and describe the interface as follows:

Approaches to

a. Type of interface (such as real-time data transfer, storage-and-retrieval of data,

etc.) to be implemented

b. Characteristics of individual data elements that the interfacing entity(ies) will

provide, store, send, access, receive, etc., such as:
i. Names/identifiers

Data Element Name

Non-Technical Name

Definition

Data Format/Length
Synonyms
Non-Technical Synonyms

CONOUHWN

Data Type (alphanumeric, integer, etc.)

Specifications/Algorithms for Derived Data
Range or enumeration of possible values (such as 0-99)

ii. Accuracy (how correct) and precision (number of significant digits)
iii. Priority, timing, frequency, volume, sequencing, and other
constraints, such as whether the data element may be updated and

whether business rules apply
iv. Security and privacy constraints

c. Sources (setting/sending entities) and recipients (using/receiving entities)

d. Characteristics of data element assemblies (records, messages, files, arrays,
displays, reports, etc.) that the interfacing entity(ies) will provide, store, send,

access, receive, etc., such as:
i. Names/identifiers

1. Technical Name (e.g., record or data structure name in code

or database
2. Non-Technical Name Synonyms
3

2) Data elements in the assembly and their structure

(number, order, grouping)

4. 3) Medium and structure of data elements/assemblies on the

medium

Appendices

5. 4) Visual and auditory characteristics of displays and other
outputs (such as colors, layouts, fonts, icons and other
display elements, beeps, lights)

ii. Relationships among assemblies, such as sorting/access
characteristics

iii. Priority, timing, frequency, volume, sequencing, and other
constraints, such as whether the assembly may be updated and
whether business rules apply

iv. Security and privacy constraints

Sources (setting/sending entities) and recipients (using/receiving entities)

Characteristics of communication methods that the interfacing entity(ies) will use
for the interface, such as:

i. Communication links/bands/frequencies/media and their
characteristics
1. Message formatting
2. Flow control (such as sequence numbering and buffer
allocation) -
3. Data transfer rate, whether periodic/aperiodic, and interval
between transfers
Routing, addressing, and naming conventions
Transmission services, including priority and grade
Safety/security/privacy considerations, such as encryption,
user authentication, compartmentalization, and auditing
ii. Characteristics of protocols that the interfacing entity(ies) will use
for the interface, such as:
1. Priority/layer of the protocol
2. Packeting, including fragmentation and reassembly,
routing, and addressing
3. Legality checks, error control, and recovery procedures
4. Synchronization, including connection establishment,
maintenance, termination
5. Status, identification, and any other reporting features

LS

Other characteristics, such as physical compatibility of the interfacing entity(ies)
(dimensions, tolerances, loads, voltages, plug compatibility, etc.)]

ANNEX E

SOFTWARE TEST PLAN DOCUMENT TEMPLATE
(To be accomplished by MISS with assistance from the Data Owner)

Introduction

The Introduction section of the Software Test Plan (STP) provides an overview of the project
and the product test strategy, a list of testing deliverables, the plan for development and
evolution of the STP, reference material, and agency definitions and acronyms used in the
STP.

1.1 Objectives

(Describe, at a high level, the scope, approach, resources, and schedule of the testing
activities. Provide a concise summary of the test plan objectives, the products to be delivered,
major work activities, major work products, major milestones, required resources, and master
high-level schedules, budget, and effort requirements.)

1.2 Testing Strategy

Testing is the process of analyzing a software item to detect the differences between
existing and required conditions and to evaluate the features of the software item.

(This may appear as a specific document (such as a Test Specification), or it may be part of
the organization's standard test approach. For each level of testing, there should be a test
plan and an appropriate set of deliverables. The test strategy should be clearly defined and the
Software Test Plan acts as the high-level test plan. Specific testing activities will have their
own test plan. Refer to section 5 of this document for a detailed list of specific test plans.)

Specific test plan components include:

Purpose for this level of test,

Items to be tested,

Features to be tested,

Features not to be tested,
Management and technical approach,
Pass / Fail criteria,

Individual roles and responsibilities,
Milestones,

Schedules, and

Risk assumptions and constraints.

L I I N O

1.3 Scope

(Specify the plans for producing both scheduled and unscheduled updates to the Software Test
Plan (change management). Methods for distribution of updates shall be specified along with
version control and configuration management requirements must be defined.)

1.4 Reference Material

(Provide a complete list of all documents and other sources referenced in the Software Test
Plan. Reference to the following documents (when they exist) is required for the high-level
test plan:

* Project authorization,
+ Project plan,
* Quality assurance plan,

Configuration management plan,
* Organization policies and procedures, and
+ Relevant standards.)

1.5 Definitions and Acronyms

(Specify definitions of all terms and agency acronyms required to properly interpret the
Software Test Plan. Reference may be made to the Glossary of Terms on the IRMC web page.)

TEST ITEMS

(Specify the test items included in the plan. Supply references to the following item
documentation:

Requirements specification,

Design specification,

Users guide,

Operations guide,

Installation guide,

Features (availability, response time),
Defect removal procedures, and
Verification and validation plans.)

L I I O O N

2.1 Program Modules
(Outline testing to be performed by the developer for each module being built.)
2.2 User Procedures

(Describe the testing to be performed on all user documentation to ensure that it is correct,
complete, and comprehensive.)

2.3 Operator Procedures

(Describe the testing procedures to ensure that the application can be run and supported in a
production environment (include Help Desk procedures)).

3. Features To Be Tested

(Identify all software features and combinations of software features to be tested. Identify the
test design specifications associated with each feature and each combination of features.)

4. FEATURES NoT To BE TESTED

(Identify all features and specific combinations of features that will not be tested along with
the reasons.)

5. APPROACH

(Describe the overall approaches to testing. The approach should be described in sufficient
detail to permit identification of the major testing tasks and estimation of the time required to
do each task. Identify the types of testing to be performed along with the methods and criteria
to be used in performing test activities. Describe the specific methods and procedures for each
type of testing. Define the detailed criteria for evaluating the test results.)

(For each level of testing there should be a test plan and the appropriate set of deliverables.
Identify the inputs required for each type of test. Specify the source of the input. Also, identify
the outputs from each type of testing and specify the purpose and format for each test output.

Specify the minimum degree of comprehensiveness desired. Identify the techniques that will
be used to judge the comprehensiveness of the testing effort. Specify any additional
completion criteria (e.g., error frequency). The techniques to be used to trace requirements
should also be specified.)

5.1 Component Testing

(Testing conducted to verify the implementation of the design for one software element (e.g.,
unit, module) or a collection of software elements. Sometimes called unit testing. The purpose
of component testing is to ensure that the program logic is complete and correct and ensuring
that the component works as designed.)

5.2 Integration Testing

(Testing conducted in which software elements, hardware elements, or both are combined and
tested until the entire system has been integrated. The purpose of integration testing is to
ensure that design objectives are met and ensures that the software, as a complete entity,
complies with operational requirements. Integration testing is also called System Testing.)

5.3 Conversion Testing

(Testing to ensure that all data elements and historical data is converted from an old system
format to the new system format.)

5.4 Job Stream Testing

(Testing to ensure that the application operates in the production environment.)

5.5 Interface Testing

(Testing done to ensure that the application operates efficiently and effectively outside the
application boundary with all interface systems.)

5.6 Security Testing

(Testing done to ensure that the application systems control and auditability features of the
application are functional.)

5.7 Recovery Testing

(Testing done to ensure that application restart and backup and recovery facilities operate as
designed.)

5.8 Performance Testing

(Testing done to ensure that that the application performs to customer expectations (response
time, availability, portability, and scalability)).

5.9 Regression Testing

(Testing done to ensure that that applied changes to the application have not adversely
affected previously tested functionality.)

5.10 Acceptance Testing

(Testing conducted to determine whether or not a system satisfies the acceptance criteria and
to enable the customer to determine whether or not to accept the system. Acceptance testing
ensures that customer requirements’' objectives are met and that all components are correctly
included in a customer package.)

5.11 Beta Testing

(Testing, done by the customer, using a pre-release version of the product to verify and
validate that the system meets business functional requirements. The purpose of beta testing
is to detect application faults, failures, and defects.)

6. Pass / FaiL CRITERIA

(Specify the criteria to be used to determine whether each item has passed or failed testing.)

6.1 Suspension Criteria

(Specify the criteria used to suspend all or a portion of the testing activity on test items
associated with the plan.)

6.2 Resumption Criteria

(Specify the conditions that need to be met to resume testing activities after suspensron
Specify the test items that must be repeated when testing is resumed.)

6.3 Approval Criteria

(Specify the conditions that need to be met to approve test results. Define the formal testing
approval process.)

7. Testing Process

(Identify the methods and criteria used in performing test activities. Define the specific
methods and procedures for each type of test. Define the detailed criteria for evaluating test
results.)

7.1 Test Deliverables

(Identify the deliverable documents from the test process. Test input and output data should
be identified as deliverables. Testing report logs, test incident reports, test summary reports,
and metrics' reports must be considered testing deliverables.)

7.2 Testing Tasks

(Identify the set of tasks necessary to prepare for and perform testing activities. Identify all
intertask dependencies and any specific skills required.)

7.3 Responsibilities

(Identify the groups responsible for managing, designing, preparing, executing, witnessing,
checking, and resolving test activities. These groups may include the developers, testers,
operations staff, technical support staff, data administration staff, and the user staff.)

7.4 Resources

(Identify the resources allocated for the performance of testing tasks. Identify the
organizational elements or individuals responsible for performing testing activities. Assign
specific responsibilities. Specify resources by category. If automated tools are to be used in
testing, specify the source of the tools, availability, and the usage requirements.)

7.5 Schedule

(Identify the high level schedule for each testing task. Establish specific milestones for
initiating and completing each type of test activity, for the development of a comprehensive
plan, for the receipt of each test input, and for the delivery of test output. Estimate the time
required to do each test activity.)

(When planning and scheduling testing activities, it must be recognized that the testing
process js iterative based on the testing task dependencies.)

8. Environmental Requirements

(Specify both the necessary and desired properties of the test environment including the
physical characteristics, communications, mode of usage, and testing supplies. Also provide
the levels of security required to perform test activities. Identify special test tools needed and
other testing needs (space, machine time, stationary supplies. Identify the source of all needs
that is not currently available to the test group.)

8.1 Hardware

(Identify the computer hardware and network requirements needed to complete test
activities.)

8.2 Software

(Identify the software requirements needed to complete testing activities.)

8.3 Security

(Identify the testing environment security and asset protection requirements.)

8.4 Tools

(Identify the special software tools, techniques, and methodologies employed in the testing
efforts. The purpose and use of each tool shall be described. Plans for the acquisition, training,
support, and qualification for each tool or technique.)

8.5 Publications

(Identify the documents and publications that are required to support testing activities.)

8.6 Risks and Assumptions

(Identify significant constraints on testing such as test item availability, test resource
availability, and time constraints. Identify the risks and assumptions associated with testing
tasks including schedule, resources, approach and documentation. Specify a contingency plan
for each risk factor.)

9. Change Management Procedures

(Identify the software test plan change management process. Define the change initiation,
change review, and change authorization process.)

